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Abstract

A numerical method for solving an axial dispersion model (two-point boundary value problem) with extremely high-order accuracy is
presented. In this method, one first recasts fundamental differential equations into S-system (synergistic and saturable system) canonical form
and then solves the resulting set of simultaneous first-order differential equations by the shooting method combined with a variable-order,
variable-step Taylor series method. As a result, it is found that over wide ranges of systemic parameters (Peclet number, dimensionless kinetic
constant, and reaction order), this method promises numerical solutions with the superhigh-order accuracy that is comparable to the machine
accuracy of the computer used. The advantage of the numerical method is also discussed. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: Axial dispersion model; Two-point boundary value problem; Superhigh-order accuracy; Taylor series method; Shooting method; S-system

1. Introduction

An axial dispersion model [1] is a two-point boundary
value problem that has been widely used to design tubular
flow reactors because this simple model can successfully
express combined effects of the reactant flow and chemical
reaction on the performance of an actual tubular flow reactor
[2]. This two-point boundary value problem was numeri-
cally solved by various methods, such as the finite-difference
method [3–6], quasi-linearization method [7], orthogonal
collocation method [8–10], and Galerkin method [11]. In
the finite-difference method, however, the solution of this
differential equation system is very unstable and requires
strict selection of the stepsize according to the magnitudes
of the systemic parameters; Peclet number and dimension-
less kinetic constant [12]. Nevertheless, the accuracy of the
numerical solution is not so high. In contrast, the orthogonal
collocation method [13] provides highly accurate numerical
solutions over wide ranges of systemic parameters. The au-
thors [14] previously examined the accuracy of the numeri-
cal solution to the axial dispersion model by the orthogonal
collocation method, in which the expressions derived from
Lagrange’s interpolation formulas were used to accurately
calculate the collocation constants; in general, designated
by Ai,j and Bi,j [15]. As a result, it was found that the
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numerical solutions have the accuracies of more than 10
significant-digits in double precision in a practical range of
the reactor operation. For larger values of Peclet number
and dimensionless kinetic constant, on the other hand, the
numerical calculation was unstable and the accuracy of
the solution was never improved even when the number
of the collocation points was increased up to 500. This is
considered due to an unavoidable loss in significant digits
generated when solving algebraic equations (approximate
equations to the relevant differential equation expressed in
terms of the collocation coefficients) by matrix operation.

In the engineering calculation, it may be sufficient if the
numerical solution has three-significant digits of accuracy in
a practical range of the reactor operation. According to our
calculated results [14,15], the orthogonal collocation method
satisfies this requirement. On the other hand, it would be use-
ful to develop a numerical calculation method which always
gives numerical solutions of the superhigh-order accuracy
that is comparable to the machine accuracy of the computer
used. In principle, such an extreme requirement could be
met only by the Taylor series method. In a previous paper,
the authors [16–18] applied the shooting method combined
with a variable-order, variable-step Taylor series method to
the two-point boundary value problem for an immobilized
enzyme reaction and found that the numerical solution
gives the superhigh-order accuracy over very wide ranges of
systemic parameters; for example, the relative error of the
numerical solution was in the order of 10−14 even when
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Nomenclature

Ai variable defined by Eq. (6)
Bi variable defined by Eq. (7)
Dij variable defined by Eq. (4)
Gi variable defined by Eq. (8)
gij exponential parameter
	γ difference between old and new values for γ
Hi variable defined by Eq. (9)
hij exponential parameter
	i increment in independent variable t to the

next solution point
k dimensionless kinetic constant
N number of dependent variables
n reaction order
Pe Peclet number
p order of finite expansion
t independent variable
Xi dependent variable
Yi logarithm of Xi

y dimensionless reactant concentration
ya dimensionless reactant concentration in Eq. (31)
yb dimensionless reactant concentration in Eq. (31)
y∗ first derivative of y with respect to γ

Z dimensionless distance from reactor outlet
(= 1 − z)

z dimensionless distance from reactor inlet

Greek symbols
αi multiplicative parameter
βi multiplicative parameter
γ dimensionless reactant concentration at Z = 0
εa error tolerance used in Eq. (34)
εn error tolerance used in Eq. (19)

the dimensionless substrate concentration in the support
was changed from 1 to 10−303 at a Thiele modulus of
700.

Although one can expect an extremely high accuracy for
the numerical solution given by the Taylor series method, it
is always a cumbersome task to derive and generalize formu-
las for higher derivatives. Moreover, one is forced to modify
the computer program greatly at each problem. To overcome
these disadvantages, the authors [19] previously proposed
an efficient numerical method for solving two-point bound-
ary value problems with the superhigh-order accuracy by
the use of a Taylor series solution in logarithmic space to
simultaneous first-order differential equations expressed in
S-system (synergistic and saturable system) canonical form
[20]. In this method, one first recasts the relevant differen-
tial equation into S-system canonical form and then solves
the resulting simultaneous first-order differential equations
by the combined shooting method with a variable-order,
variable-step Taylor series method. Major advantages of
this method are that one can always have absolute reliance

on the numerical solution because of its superhigh-order
accuracy and solve various types of two-point boundary
value problems by changing S-system parameters included
in the generalized computer program.

In the present work, the author applies this numerical
method to the axial dispersion model with a kinetic equation
in power-law form and investigates the accuracies of the
numerical solutions obtained for various combinations of
systemic parameters (Peclet number, dimensionless kinetic
constant, and reaction order). The author also discusses the
usefulness of this method.

2. Theory

2.1. Taylor series solution for initial-value problems
expressed in S-system canonical form

A general form of the equations to describe an S-system
is given by [21]

X
(1)
i = αi

N∏
j=1

X
gij
j − βi

N∏
j=1

X
hij
j (i = 1, 2, . . . , N) (1)

where X
(1)
i signifies the first derivative of Xi with respect to

the independent variable t . A finite Taylor series for solution
of Eq. (1) in logarithmic space can be written as [20]
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in which
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(5)

Ă
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where the symbol ˘ indicates that the corresponding variable
is calculated by including the value of 	i , thereby reducing
generation of overflow or underflow errors.

Based on the above fundamental equations and algorithm,
it is possible to write a generalized computer program that
guarantees extremely high accuracy for the numerical solu-
tion to the S-system equations. This means that whenever a
given nonlinear differential equation can be recast into the
S-system canonical form given by Eq. (1), one can expect
highly accurate solutions to the differential equation by use
of the generalized program as a library.

2.2. Recasting

As was indicated by Savageau and Voit [22], a given
differential equation can easily be recast into the S-system
canonical form regardless of the degree of its nonlinearity.
The two-point boundary value problem that will be inves-
tigated here includes first- and second-order derivatives and
these also must be recast. In general, an autonomous system
which consists of nth-order ordinary differential equations
can be transformed to n sets of first-order differential equa-
tions. In the case of the two-point boundary value problem,
this transformation produces at least two sets of simulta-
neous first-order differential equations and the number of
equations is further increased according to the degree of
nonlinearity of the resulting first-order differential equations.

2.3. Differential equation for an axial dispersion model

The axial dispersion model for a tubular flow reactor [1]
is given by

1

Pe

d2y

dz2
− dy

dz
= kyn (10)

subjected to the following boundary conditions:

1 =
(
y − 1

Pe

dy

dz

)∣∣∣∣
z=0

(11)

dy

dz

∣∣∣∣
z=1

= 0 (12)

where y is the dimensionless reactant concentration, z the
dimensionless coordinate whose origin is located at the
reactor inlet, Pe the Peclet number, k the dimensionless
kinetic constant, and n the reaction order. Transformation
of Eqs. (10)–(12) by use of the relation of Z = 1 − z gives
the following equations:

1

Pe

d2y

dZ2
+ dy

dZ
= kyn (10)′

1 =
(
y + 1

Pe

dy

dZ

)∣∣∣∣
Z=1

(11)′

dy

dZ

∣∣∣∣
z=0

= 0 (12)′

2.4. Algorithm for solution of two-point boundary value
problems by shooting method [23]

An arbitrary value for y at Z = 0 is assumed to be

y|Z=0 = γ (13)

and Eq. (10)′ is integrated numerically from Z = 0 to 1 to
obtain the values of y|Z=1 and (dy/dZ)|Z=1. These values
are used to calculate f (γ ), defined as

f (γ ) =
(
y + 1

Pe

dy

dZ

)∣∣∣∣
Z=1

− 1 (14)

If γ is a true value, f (γ ) should be equal to zero. However,
it will probably take a value other than zero because γ is
an arbitrarily assumed value. Thus, the Newton–Raphson
method is used to obtain a new estimate for γ . This proce-
dure is repeated until the relation of f (γ ) = 0 is satisfied
and consequently, a solution to the two-point boundary
value problem is determined.

The Newton–Raphson method requires a value of the
derivative of f (γ ) with respect to γ , i.e. f ∗(γ ), which is
evaluated as follows. Differentiation of Eqs. (10)′and (13)
with respect to γ give

1

Pe

d2y∗

dZ2
+ dy∗

dZ
= knyn−1y∗ (15)

y∗|Z=0 = 1 (16)

where the symbol ∗ indicates the derivative of a given depen-
dent variable with respect to γ . Integration of Eq. (15) from
Z = 0 to 1 gives the values of y∗|Z=1 and (dy∗/dZ)|Z=1.
These values are then used to calculate f ∗(γ ) by

f ∗(γ ) =
(
y∗ + 1

Pe

dy∗

dZ

)∣∣∣∣
Z=1

(17)

which was derived by differentiating Eq. (14) with respect
to γ . Thus, one calculates 	γ by

	γ = f (γ )

f ∗(γ )
(18)



178 F. Shiraishi / Chemical Engineering Journal 83 (2001) 175–183

and checks if the criterion∣∣∣∣	γ

γ

∣∣∣∣ < εn (19)

is satisfied. If this is not satisfied, a new estimate for γ is
calculated by

γ |New = γ |Old − 	γ (20)

and the same procedure is iterated from the beginning.

2.5. Recasting of two-point boundary value problem into
S-system equations

To recast the differential equation given by Eq. (10)′ into
S-system equations, each variable is set as follows:

y → X1,
dy

dZ
→ X2,

y∗ → X3,
dy∗

dZ
→ X4, Z → t

As a result of recasting, the following four simultaneous
first-order differential equations are given:

X
(1)
1 = X2 (21)

X
(1)
2 = k PeXn

1 − PeX2 (22)

X
(1)
3 = X4 (23)

X
(1)
4 = nk PeXn−1

1 X3 − PeX4 (24)

subjected to the following initial conditions:

X1|t=0 = γ (25)

X2|t=0 = 0 (26)

X3|t=0 = 1 (27)

X4|t=0 = 0 (28)

Table 1 lists S-system parameters, αi , βi , gij, and hij, in-
volved in Eqs. (21)–(24).

Thus, Eqs. (21)–(24) are simultaneously integrated from
Z = 0 to 1 by the Taylor series method to obtain the values

Table 1
S-system parameters obtained by recasting axial dispersion model with a kinetic equation in power-law form

i αi gi,j βi hi,j

j = 1 j = 2 j = 3 j = 4 j = 1 j = 2 j = 3 j = 4

1 1 0 1 0 0 0 0 0 0 0
2 k Pe n 0 0 0 Pe 0 1 0 0
3 1 0 0 0 1 0 0 0 0 0
4 nk Pe n − 1 0 1 0 Pe 0 0 0 1

of Xi |t=1 (i = 1, 2, 3, and 4). These values are then used to
calculate f (γ ) and f ∗(γ ) by

f (γ ) =
(
X1 + 1

Pe
X2

)∣∣∣∣
t=1

− 1 (29)

f ∗(γ ) =
(
X3 + 1

Pe
X4

)∣∣∣∣
t=1

(30)

Eqs. (29) and (30) were obtained by recasting Eqs. (14) and
(17), respectively. The values of f (γ ) and f ∗(γ ) are used
to calculate 	γ , which is further used to check if Eq. (19)
is satisfied. Unless the criterion is satisfied, a new estimate
is calculated by Eq. (20) and the same procedure is repeated
from the beginning.

2.6. Estimation method of γ

An initial value for γ is necessary to simultaneously in-
tegrate Eqs. (21)–(24). As described later, when the initial
value for γ is not suitable, halving the present stepsize is
repeated. Consequently, the progress of the integration is
stopped at a certain position of Z < 1. In the present work,
therefore, γ was repeatedly estimated in the following
procedure.

The values of ya and yb are set at zero and unity, respec-
tively, to calculate the initial value for γ by

γ = 1
2 (ya + yb) (31)

and the integration by the Taylor series method is started. If
the progress of the integration is stopped at Z < 1, the new
estimate of γ is calculated by substituting the present value
of γ to yb in Eq. (31) and the same procedure is repeated.
When the integration has been successfully executed up to
Z = 1, the root-finding is changed to the Newton–Raphson
method.

2.7. Virtual zero value for dependent variables and its
modification method

The present numerical method integrates Eqs. (21)–(24)
in logarithmic space, which causes a problem when the de-
pendent variable takes a zero value. In fact, the initial values
for X2 and X4 are equal to zero, as shown in Eqs. (26) and
(28), respectively. To cope with this problem, the author
used a much smaller value than γ for the zero value. That
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is, a value of 100−100 was used as a virtual zero value
and this value was successively modified by multiplying the
estimated γ by 10−20, the magnitude of which value was de-
termined by taking into consideration that a numerical value
has 15–16 significant digits in double precision.

2.8. Methods for selecting suitable stepsizes and judging
completion of convergence

If a term whose absolute value is larger than those of
the first few terms appears in the process of summing the
Taylor series, the catastrophic cancellation of significant
digits probably occurs. Similarly, if the absolute values of
the successive terms are very small compared with those
of the first few terms, the swamp of information probably
occurs. To solve these problems, the author used a stepsize
calculated from the equation that was derived by setting the
ratio of first- and second-derivatives of the Taylor series at
unity, i.e.,∣∣∣∣Di,1

Di,2

∣∣∣∣ = 1 (32)

This easily leads to

	i = 2

∣∣∣∣∣Y
(1)
i

Y
(2)
i

∣∣∣∣∣ (33)

Thus, 	i for each dependent variable is calculated by
Eq. (33) and the smallest value among them is used as an
initial value of the stepsize at this step. Then, Di,j (i =
0, 1, 2, 3, . . .) are consecutively calculated and summed up
until the criterion:∣∣∣∣Di,j

Di,0

∣∣∣∣ < εa (εa = 10−18) (34)

is satisfied. In the process of summing the Taylor series,
moreover, unless the inequality:

|Di,j | > |Di,j+1| (35)

is satisfied, the present stepsize is halved as

	i = 1
2	i (36)

and the same procedure is iterated from the beginning. As
a special case of the Taylor series, furthermore, it is consid-
ered that Eq. (35) is satisfied but the Taylor series converges
very slowly and Eq. (34) is not satisfied even for a suffi-
ciently large value of i. In such a case, it is not efficient to
subsequently carry out the summation of the Taylor series.
Therefore, unless Eq. (34) is satisfied by i = imax(= 25), the
present stepsize is halved and then the same procedure is it-
erated. According to the procedure described here, a suitable
stepsize will be finally found that satisfies Eq. (35) for every
value of i and Eq. (34) for successive values of i (≤ imax)
and the values of y1, y′

1, y∗
1 , and y′∗

1 , which do not include
the loss-of-significance error remarkably, will be obtained.

In the present work, the calculation was performed in dou-
ble precision with SYMANTEC C++ (Version 8.1) running
on a PowerBook 3400C. With standard double-precision real
numbers, PC languages such as C, PASCAL, FORTRAN,
and BASIC usually guarantee 15–16 significant digits of ac-
curacy [24]. Therefore, a value of 10−10 is set for εn and the
calculation is repeated one more time after the criterion given
by Eq. (19) is satisfied. This is because the Newton–Raphson
method converges quadratically. If the loss-of-significance
error is little generated, the numerical solution thus obtained
is expected to have the superhigh-order accuracy.

3. Results and discussion

3.1. Step number (the number of total integration steps)

Changes in the step number with the progress of the inte-
gration of Eqs. (21)–(24) from a virtual zero value to unity
are shown in Fig. 1, where the calculation was carried out
for Pe = 10 and 1000 at n = 1 and k = 10. In both
cases, the step number increases linearly with the logarith-
mic value of Z at the same rate. In other words, almost the
same step number is required for the integration per one tick
of the Z-coordinate regardless of different parameter con-
ditions. This means that the execution time becomes longer
if a smaller value is used for the virtual zero. In the present
work, therefore, the author repeatedly modified the virtual
zero when γ was estimated by the Newton–Raphson method,
according to the procedure described in Section 2.7. Con-
sequently, the integration time for one trial was remarkably
reduced after the first trial.

3.2. Process of convergence

The value of X1 is the dimensionless reactant concentra-
tion and its maximum value is equal to unity. If γ is not
suitable, the stepsize is halved many times toward zero and
consequently, the integration stops at a certain position of

Fig. 1. Changes in step number with progress of integration.
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Fig. 2. Relative errors of dimensionless reactant concentrations calculated
at a given position in a tubular flow reactor.

Z < 1. This is due to the fact that X1 becomes larger than
unity before the integration reaches Z = 1. That is, the cal-
culation is diverged if a suitable value is given for γ . In the
present work, therefore, estimation of γ was carried out in
the two ways as described in Section 2.6. First, the initial
value of γ was set at 0.5 by Eq. (31) and the integration was
started. If X1 exceeded unity at Z < 1, then γ was set at 0.25
as a result of replacing yb by γ in Eq. (31) and the integration
was executed again. This modification of γ was repeated un-
til y was ranged between 0 and 1 at Z = 1 and the estimation
was then succeeded to the Newton–Raphson method. As the
calculation condition became severe, consecutive modifica-
tion of γ by Eq. (31) was necessary, especially for n �= 1
and larger values of Pe and k. For smaller γ , the integration
tended to diverge at the position of Z closer to unity.

3.3. Effect of Peclet number

The relative errors of the dimensionless reactant con-
centrations calculated at a given position in the reactor are
shown in Fig. 2, where Pe was changed from 10 to 500 at
n = 1 and k = 10. The relative error is in the order of 10−15

at Pe = 10 and is increased with the increase of Pe. For ex-
ample, at Pe = 500, this value is increased gradually from
2.42 × 10−15 to 3.19 × 10−14. This is surprising because
in this case, the dimensionless reactant concentration is
changed from 0.368 to 5.50 × 10−5. This result indicates
high performance of the present numerical method.

The dimensionless reactant concentrations calculated at
a given position in the reactor are shown in Fig. 3, where
Pe was changed as a parameter over its wide range from
1 to 1000 at n = 1 and k = 10. The analytical solutions
for the first-order reaction are also shown by solid lines in
this figure. The relative errors for these numerical solutions
were all below 3.19×10−14, suggesting that the calculation
was carried out with the accuracy that is comparable to the
machine accuracy. Under the condition of Pe = 1000, shown
by a broken line, calculation by the analytical solution was
impossible because the exponential function term included

Fig. 3. Comparison between numerical and analytical solutions for di-
mensionless reactant concentrations calculated at a given position in a
tubular flow reactor.

in this equation caused an overflow error. Conversely, the
numerical solution was obtainable. This result clearly shows
an advantage of numerically solving the differential equation
by the present method.

Fig. 4(a)–(c) shows changes in the execution time, step
number, and final value of |	γ/γ |, respectively, over a wide
range of Pe from 0.1 to 1000. For the first-order reaction,
all the calculations except for Pe = 1000 were completed
in 52 s. When n = 2, the execution time is clearly increased
with the increase of Pe and is longer than the case of n = 1
regardless of smaller step numbers because repeated estima-
tion of γ by Eq. (31) was necessary in this case. The execu-
tion times at n = 2 and 5 are almost the same over the whole
range of Pe. For all the reaction orders, the step number in-
creases with the increase of Pe. This is because the larger
the value of Pe, the smaller the dimensionless reactant con-
centration at Z = 0. In the present reaction system, there is
no analytical solution except for n = 1. Therefore, the final
value of |	γ/γ | was used to estimate the accuracy of the nu-
merical solution instead of the relative error, as carried out in
previous papers [16,19]. As seen in Fig. 4(c), most of these
values are in the order of 10−15, showing that the numerical
solutions were obtained with the superhigh-order accuracy.

3.4. Effect of dimensionless kinetic constant

The dimensionless reactant concentrations calculated at a
given position in the reactor are shown in Fig. 5, where k

was changed as a parameter over its wide range from 1 to
1000 at n = 1 and Pe = 10. The analytical solutions for the
first-order reaction are also shown by solid lines in this fig-
ure. The numerical solutions are completely identical to their
respective analytical solutions. The relative errors of these
numerical solutions were all below 5.00×10−14, suggesting
that the calculation was carried out at a level of the machine
accuracy. This high level of accuracy is surprising because
under the condition of k = 1000, the dimensionless reactant
concentration is decreased from 0.0951 to 8.83 × 10−43.
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Fig. 4. Effects of Peclet number on the present numerical calculation
method.

Fig. 6(a)–(c) shows changes in the execution time, step
number, and final value of |	γ/γ |, respectively, over a
wide range of k from 0.1 to 1000. For every n, the ex-
ecution time is increased with the increase of k. When
n = 2, the execution time is increased significantly with
the increase of k because estimation of γ by Eq. (31) was
always necessary at n = 2 and 5. When n = 1, the step
number is exponentially increased from 500 at k = 0.1 to
1302 at k = 1000. This is because the larger the value of
k, the smaller the dimensionless reactant concentration at
Z = 0. The final values of |	γ/γ | are below 3.20 × 10−14.
It should be emphasized that the present method gives a
numerical solution with the superhigh-order accuracy even
when the step number exceeds 1000.

Fig. 5. Comparison between numerical and analytical solutions for di-
mensionless reactant concentrations calculated at a given position in a
tubular flow reactor.

3.5. Effect of reaction order

The dimensionless reactant concentrations calculated at a
given position in the reactor are shown in Fig. 7, where n

was changed as a parameter from 0.8 to 5 at k = 10 and
Pe = 10. The numerical solution for n = 1 is completely
identical to the analytical solution, as shown by a broken
line in this figure. The execution time was 205 s at n = 0.8
because of its large step number. For n ≥ 2, the calculation
was completed within 160 s. The step number showed a
maximum of 605 at n = 0.8 and rapidly decreased with the
increase of n. Similarly, the final value of |	γ/γ | showed
a maximum of 1.0 × 10−14 at n = 1 and then decreased
rapidly with the increase of n, suggesting that the calculated
values have superhigh-order accuracies.

3.6. About oscillation of the calculated values

A schematic relationship between f (γ ) and γ is given
in Fig. 8. The shapes of the curves suggest that if n = 1,
the Newton–Raphson method can use a wide range of
γ (0 < γ < 1) as the initial value, but if n �= 1, it cannot
find a solution by itself and must rely on other methods.
In the present work, therefore, the root-finding scheme de-
scribed in Section 2.6 was introduced to obtain an initial
value of γ that does not stop the progress of the integration
at Z < 1, prior to applying the Newton–Raphson method.
On the other hand, the number of iteration was varied ac-
cording to the initial values of ya and yb. As evident from
Figs. 4(c) and 6(c), this variation gave a remarkable influ-
ence on the execution time. At each relationship between
f (γ ) and γ , given for a combination of Pe, k, and n, it
seems that there are respective optimum values for ya and
yb, which makes the number of iterations small. Therefore,
if one solves the algebraic equation after determination of
the optimum initial values, the calculated values could be
continuously ranged. However, this work is so tedious and
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Fig. 6. Effects of dimensionless kinetic constant on the present numerical
calculation method.

impractical, so that all the calculations were made by fixing
the initial values of ya and yb at 0 and 0.8, respectively.

On the other hand, the oscillation of |	γ/γ |, seen in
Figs. 4(a) and 6(a), is considered due to the fact that the
calculated values were obtained by repeating the calculation
one more time after the calculated values were satisfied with
the criterion given by Eq. (19) and then plotted directly;
therefore, the relative errors of the calculated values are not
minimum. In addition, it is considered that the extent of
the loss-of-significance errors produced in the process of
a large number of arithmetic calculations was different at
each relationship between f (γ ) and γ for a combination
of Pe, k, and n. However, since the relative errors of the

Fig. 7. Comparison between numerical and analytical solutions for di-
mensionless reactant concentrations calculated at a given position in a
tubular flow reactor.

calculated values are estimated to be in the order of or less
than 10−14, it would be meaningless to discuss the continuity
of the calculated values in the regime close to the computer
accuracy. Thus, no further investigation was made.

3.7. Advantages and applications of the present numerical
method

As is evident from the calculated results given here, the
present numerical method for two-point boundary value
problems can give numerical solutions of superhigh-order
accuracy over wide ranges of systemic parameters (Pe, k,
and n). Moreover, the present method makes it possible to
rapidly solve different types of two-point boundary value
problems. For example, one can easily apply the present
method to the immobilized-enzyme reaction model and
obtain numerical solutions with the superhigh-order accu-
racy [16,19]. In this case, the user needs only to recast the
fundamental differential equations into the S-system canon-
ical form, inputting the S-system parameters included in
the recast first-order differential equation and the data for
f (γ ), f ∗(γ ), and initial conditions.

Several applications of the present numerical method are
considerable. First, this method is useful for engineering

Fig. 8. A schematic relationship between f (γ ) and γ .
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calculations. In the engineering field, it may be sufficient
if calculated values are accurate to three significant digits.
However, the conventional methods do not always guarantee
this level of accuracy over wide ranges of systemic param-
eters. Furthermore, even when the numerical method gives
a solution that is accurate to three significant digits, this
level of accuracy is insufficient if the system is constituted
by several different types of differential equations. For ex-
ample, in the design of a packed-bed immobilized enzyme
reactor, one must solve the two-point boundary value prob-
lem repeatedly at selected points in the reactor [25–27]. This
certainly increases calculation errors.

Second, the present method can be used as a standard to
evaluate the performance of other numerical methods, as was
used to examine the accuracy of the orthogonal collocation
method in the previous paper [15].

Third, the present method can be used to make a standard
diagram or table which is never forgiven to include any
calculation error [28].
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